On Homogeneous Lyapunov Function Theorem for Evolution Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Lyapunov function for homogeneous continuous vector field

The goal of this article is to provide a construction of a homogeneous Lyapunov function P associated with a system of differential equations J = f(x), x ~ R ~ (n > 1), under the hypotheses: (1) f ~ C(R n, ~ ) vanishes at x = 0 and is homogeneous; (2) the zero solution of this system is locally asymptotically stable. Moreover, the Lyapunov function V(x) tends to infinity with 1[ x [I, and belon...

متن کامل

New results for fractional evolution equations using Banach fixed point theorem

In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.

متن کامل

Lyapunov function proof of Poincaré's theorem

One of the most fundamental results in analysing the stability properties of periodic orbits and limit cycles of dynamical systems is Poincaré’s theorem. The proof of this result involves system analytic arguments along with the Hartman–Grobman theorem. Using the notions of stability of sets, lower semicontinuous Lyapunov functions are constructed to provide a Lyapunov function proof of Poincar...

متن کامل

A modified matrix sign function method for projected Lyapunov equations

In this paper we discuss the numerical solution of projected generalized Lyapunov equations using the matrix sign function method. Such equations arise in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. It is known that the matrix sign function method applied to a matrix pencil λE−A converges if and only if λE−A is of index ...

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2020

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2020.12.1121